

HISTORIC PRESERVATION COMMISSION

Marc Elrich
County Executive

Sandra I. Heiler Chairman

Date: September 11, 2020

MEMORANDUM

SUBJECT:

TO: Mitra Pedoeem

Department of Permitting Services

FROM: Dan Bruechert

Historic Preservation Section

Maryland-National Capital Park & Planning Commission Historic Area Work Permit # 924041 - Solar Installation

The Montgomery County Historic Preservation Commission (HPC) has reviewed the attached application for a Historic Area Work Permit (HAWP). This application was **approved** at the September 9, 2020 HPC meeting.

The HPC staff has reviewed and stamped the attached construction drawings.

THE BUILDING PERMIT FOR THIS PROJECT SHALL BE ISSUED CONDITIONAL UPON ADHERENCE TO THE ABOVE APPROVED HAWP CONDITIONS AND MAY REQUIRE APPROVAL BY DPS OR ANOTHER LOCAL OFFICE BEFORE WORK CAN BEGIN.

Applicant: Hubert Chang

Address: 7135 Maple Ave,. Takoma Park

This HAWP approval is subject to the general condition that the applicant will obtain all other applicable Montgomery County or local government agency permits. After the issuance of these permits, the applicant must contact this Historic Preservation Office if any changes to the approved plan are made. Once work is complete the applicant will contact Dan Bruechert at 301.563.3400 or dan.bruechert@montgomeryplanning.org to schedule a follow-up site visit.

Montgomery County

Historic Preservation Commission

APPROVED

Sandral. Kkiler

7135 MAPLE AVE. TAKOMA PARK, MD 20912

REVIEWED

By Dan.Bruechert at 2:24 pm, Sep 11, 2020

PV SOLAR SYSTEM NOTES | ABBREVIATIONS & LEGEND **SEAL** PROJECT DATA DRAWING INDEX PROJECT NAME A) SOLAR MODULE INSTALLED IAW SOLAR 0001 **COVER SHEET** AHJ AUTHORITY HAVING MODULE MANUFACTURERS INSTRUCTIONS ARRAY PLAN JURISDICTION A001 SEE TITLE ABOVE B) SOLAR MODULE CLAMPS INSTALLED IAW ELEVATION/TRUSS AND FRAMING, ALTERNATING CURRENT SOLAR MOUNT INSTALLATION STRUCTURAL CALCULATIONS. CIRCUIT BREAKER INSTRUCTIONS C) EXISTING ROOF, KNOWN BY OWNER **ELECTRICAL SCHEMATIC** JB JUNCTION BOX AND PRIME CONTRACTOR TO BE IN SOUND **ELECTRICAL CALCULATIONS** F002 ON CENTER CONDITION AND IAW WITH BUILDING E003 **ELECTRICAL MODULE SPECS** LBS POUNDS SOLAR PV PANELS INSTALLATION ON HARDWARE MOUNTING FT FOOT EXISTING ROOF STRUCTURE BY D) ALL ELECTRICAL WORK SHALL COMPLY DETAILS/SPEC IAW IN ACCORDANCE WITH I HEREBY CERTIFY THAT THIS DOCUMENT WAS WITH THE 2017 NATIONAL ELECTRIC CODE LBS POUNDS APPROVED BY ME, AND THAT I AM A DULY LICENSED MPH MILES PER HOUR PROFESSIONAL ENGINEER UNDER THE LAWS OF THE E) DC CONDUCTORS INSIDE BUILDING PSF POUNDS PER SQUARE FOOT STATE OF MARYLAND, MEMBERS LICENSE NO. 41066, SHALL BE IN METALLIC RACEWAY IN ACCORDANCE WITH (IAW) ART 690.3(E) EXPIRATION DATE: 2021-09-08 F) GROUNDING: ALL EXPOSED METAL PARTS (BOXES AND MOUNTING RAILS) **MODEL VIEW EXISTING ROOF ATTIC** SITE VIEW **EXISTING SERVICE PANEL** SHALL BE BONDED WITH EQUIPMENT GROUNDING CONDUCTORS (EGC) AND **NEW ARRAYS ON MULTI-ROOF** GROUNDED AT THE MAIN ELECTRICAL G) PROVIDE A PLACARD ON THE AC CUT OFF SWITCH (SW) WITH THE FOLLOWING INFORMATION IN 1/4' HIGH LETTERING PER NEC 690.54: "CAUTION - POSSIBLE **BACKFEED PHOTOVOLTAIC POWER** SYSTEM" I) PROVIDE A PLACARD ON THE MAIN SERVICE PANEL WITH THE FOLLOWING INFORMATION IN 1/4' HIGH LETTERING PER NEC 690.17: "WARNING: ELECTRICAL SHOCK HAZARD. DO NOT TOUCH 7135 MAPLE AVE TERMINALS. TERMINALS ON LINE AND LOAD SIDES MAY BE ENERGIZED IN THE OPEN TAKOMA PARK, MD 20912 **VICINITY LOCATION EXISTING METER EXISTING EXTERIOR** 1: THE DETAILS AND SPECIFICATIONS CONTAINED IN THESE DRAWINGS ARE SITE LOCATION-CONSIDERED TO BE THE MINIMUM BY THE AHJ AND INSTALLERS. 2: THIS PLAN SPECIFIES THE STRUCTURAL AND ELECTRICAL REQUIREMENTS FOR INSTALLATION OF SOLAR PHOTOVOLTAICS PANELS ON ROOF SURFACE AS SHOWN. 3: USE COMMON SENSE AND OSHA **REGULATIONS UNTIL INSTALLATION IS** COMPLETED.

RESIDENCE
PV SOLAR INSTALLATION
TAKOMA PARK MD 20012

20912-01

REVISION LEVEL DATE
REV-1 DATE

DRAWN BY:
GDC
CHECKED BY:
TR

ALE AS N AWING TITLE

COVER SHEET

DRAWING NUMBER

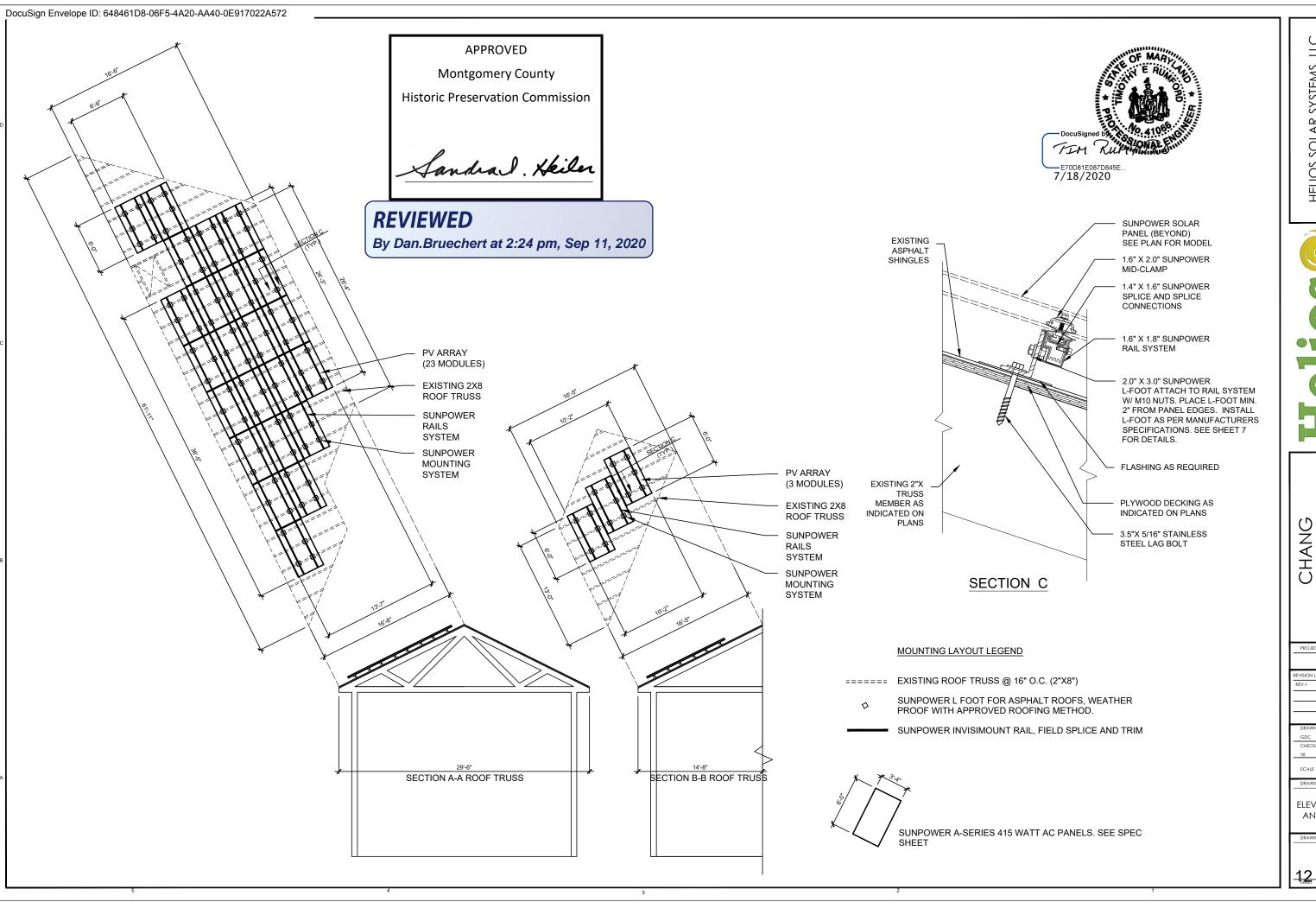
0001 10 SHEET 1 OF 8

HELIOS SOLAR SYSTEMS, LLC ASHBURN VA, USA WWW.HELIOSOLARSYS.COM 703 577 2178

RESIDENCE
PV SOLAR INSTALLATION
7135 MAPLE AVE.
TAKOMA PARK, MD 20912

PROJECT FILE
20912-01
VISION LEVEL DATE

REVISION LEVEL DATE


REV-1 DATE

DRAWN BY: GDC CHECKED BY:

TR SCALE

ARRAY MAP

A001

HELIOS SOLAR SYSTEMS, LLC ASHBURN VA, USA WWW.HELIOSOLARSYS.COM 703 577 2178

Helios Solar Systems

RESIDENCE
PV SOLAR INSTALLATION
7135 MAPLE AVE.
TAKOMA PARK, MD 20912

PROJECT FILE
20912-01
EVISION LEVEL DATE

-1 DATE

DRAWN BY:
GDC
CHECKED BY:
TR

DRAWING TITLE

ELEVATION/TRUSS AND FRAMING

DRAWING NUMBER

S001

Montgomery County

Historic Preservation Commission

Sandral. Kkiler

By Dan.Bruechert at 2:24 pm, Sep 11, 2020

<u>S</u>	tr	uc	tu	ral	Α	na	lys	į

Hubert Chang - Montgomery County (Takoma Park Historic) 7135 Maple Ave. Takoma Park, MD 20912

3

Address:

Wind

115

Project Name:

Description: Pitched roof, 26 SunPower A-Series 415-watt Type-G AC panels

Load/Structure Assumptions (1)

Roof Wind Zone Importance Wind Snow load Roof

Speed Height (ft) factor Cat Exposure (mph)

Present Conditions and Structure Info

Framing is 2x8 16-OC with 5'8" deck and shingle roof.

Wind Loading

Pnet = Net Design Wind Pressure

30

From ASCE 7-10, 100sf eff wind area, 7 to 27deg, zone 3

Down 9.7 Module Areas (sf):

44 115 mph

Wind Force (lbs), Per module: Area=

Down Up 194.5 882.4

Array number of

fasteners

26 Array Number of Modules: Number of fasteners per module: 3.1

Force per fastener: (lbs)

63.2

Down

286.8 Pull out Force per fastener, lbs (2):

5/16" x 3.5" SS Lag. Assumes worst case wood

681 species

Design Margin (Capability/Exposure). >2 required

Down 2.4 x margin 10.8

Uplift wind loads well below pull out force on fasterners. Down Force, since modules are flush, array not likely to affect forces compared to existing bare roof deflection. Uplift psf < negative snow load. Side wind loads negligible.

Modules are flush and not likely to affect snow drift

Module Weight (lbs) 46.5

2.3 psf

(negligible effect)

Seismic Seismic criteria were not considered per provisions of ASCE 7-10 Section 13.1.4

NOTES

(1) ASCE 7-10

(2) NACBEP Guide on withdrawal loads for lag bolts per inch based on lag bolt size and wood type. Since wood type is not known, used the worst case which is white spruce, 227 lbs per inch for 5/16" lags. 3.5" bolt gives 3 inch penetration. 227 x 3.

HELIOS SOLAR SYSTEMS, LLC ASHBURN VA, USA WWW.HELIOSOLARSYS.COM 703 577 2178

RESIDENCE
PV SOLAR INSTALLATION
7135 MAPLE AVE.
TAKOMA PARK, MD 20912

PROJECT FILE	
20912-01	
REVISION LEVEL	DATE
REV-1	D

CHECKED BY

STRUCTURAL CALCULATIONS,

DETAIL

S002

Α

Α

Α

NAME

SOLAR MODULES

MicroInverters

JUNCTION BOX

LOAD CENTER

AC Disco

Α

TAG

2

3

5

В

В

В

В

С

С

С

С

P/N

SunPower A-Series

panels

SUNPOWER

FACTORY ul

Field determined

LOAD CENTER. **OR EQUIV**

AC LOAD CENTER,

TWO SPACE, 50A

OCPD

125-AMP 8-SPACE 16-

CIRCUIT MAIN LUG

415-watt Type-G AC

EQUIPMENT SCHEDULE

QTY

26

26

3

1

NOTES

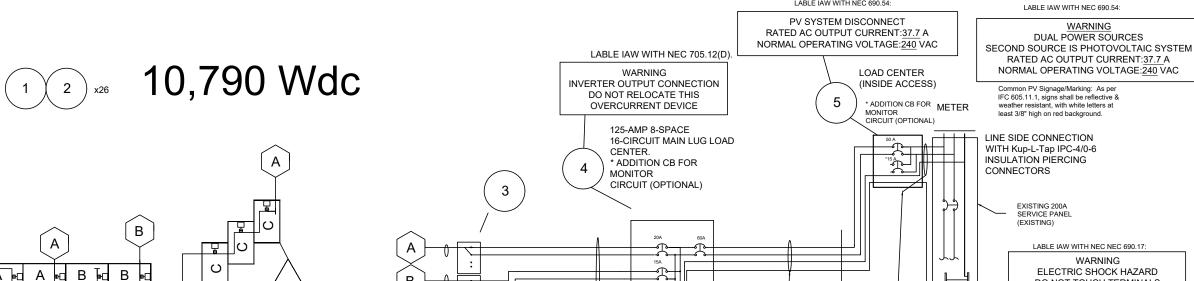
DISCO

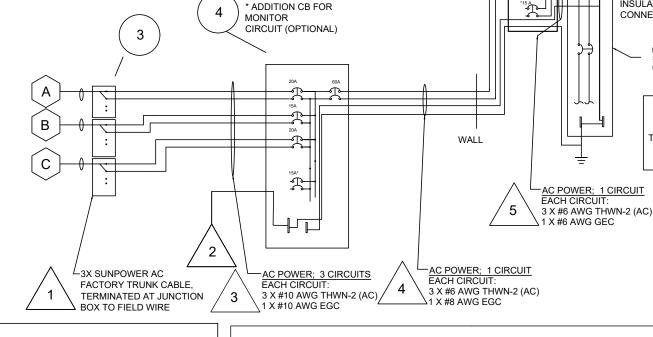
3 CIRCUIT

Mounted to modules at factory

JUNCTION BOX, LOCATED ON ROOF

WITH 60 CB SERVING OUTSIDE AC


For INSIDE access. 240VAC, 70A.


CHECKED BY

SCALE

ELECTRICAL SCHEMATIC

E001

WIRE SCHEDULE (EACH CIRCUIT)

TAG	DESCRIPTION	GAUGE	QTY	CONDUIT, DISTANCE
1	SUNPOWER AC Cable, 1-Ph (3-Wire), CAP	#10 (REF)	1	FACTORY CABLE, WITH
_	UNUSED CONNECTORS, CAP AS SHOWN	"20 (".2" /	-	INTEGRATED CONNECTORS.
				TIE TO MOUNTING RAILS.
				LENGTH OF ARRAY
2	CONTINUOUS EGC #10 COPPER RACKING	#10	1	ROUTED WITH PV WIRE, THEN
	SYSTEM TO EARTH GROUND -			IN CONDUIT AFTER JUNCTION
				вох
3	AC POWER FROM ROOF JBs TO AC LOAD	#10 (L1,	3	ROUTES ACROSS ROOF AND
	CENTER	L2), #10		DOWN SIDE OF BUILDING to
	THWN-2 (240 VAC)	(EGC)		LOAD CENTER/ SWITCH NEAR
	MAX DERATING CURRENT (SEE CALCS			METER, IN EMT. APPROX. 100
	PAGE);			FEET. IF ROUTED INDOORS,
	MAX VOLTAGE (SEE CALCS PAGE)			NM CABLE PERMISSIBLE
4	LOAD CENTER TO AC DISCO AND TO MAIN	#6 (L1, L2,	4	ROUTES ACROSS SIDE OF
	SERVICE PANEL	N), #8		BUILDING to AC Disco FEET,
	THWN-2 (240 VAC)	(EGC)		EMT
	MAX DERATING CURRENT (SEE CALCS			
	PAGE);			
	MAX VOLTAGE (SEE CALCS PAGE)			
5	LOAD CENTER TO AC DISCO AND TO MAIN	#6 (L1, L2,	4	ROUTES ACROSS SIDE OF
	SERVICE PANEL	N), #6		BUILDING to AC Disco FEET,
	THWN-2 (240 VAC)	(GEC)		EMT
	MAX DERATING CURRENT (SEE CALCS			
	PAGE);			
	MAX VOLTAGE (SEE CALCS PAGE)			

LABLE IAW WITH NEC 690.54:

TAG	DESCRIPTION	GAUGE	QTY	CONDUIT, DISTA
1	SUNPOWER AC Cable, 1-Ph (3-Wire), CAP	#10 (REF)	1	FACTORY CABLE,
	UNUSED CONNECTORS, CAP AS SHOWN			INTEGRATED CO
				TIE TO MOUNTII
				LENGTH OF ARR
2	CONTINUOUS EGC #10 COPPER RACKING	#10	1	ROUTED WITH P
	SYSTEM TO EARTH GROUND -			IN CONDUIT AFT
				BOX
3	AC POWER FROM ROOF JBs TO AC LOAD	#10 (L1,	3	ROUTES ACROSS
	CENTER	L2), #10		DOWN SIDE OF E
	THWN-2 (240 VAC)	(EGC)		LOAD CENTER/S
	MAX DERATING CURRENT (SEE CALCS			METER, IN EMT.
	PAGE);			FEET. IF ROUTE
	MAX VOLTAGE (SEE CALCS PAGE)			NM CABLE PERM
4	LOAD CENTER TO AC DISCO AND TO MAIN	#6 (L1, L2,	4	ROUTES ACROSS
	SERVICE PANEL	N), #8		BUILDING to AC
	THWN-2 (240 VAC)	(EGC)		EMT
	MAX DERATING CURRENT (SEE CALCS			
	PAGE);			
	MAX VOLTAGE (SEE CALCS PAGE)			
5	LOAD CENTER TO AC DISCO AND TO MAIN	#6 (L1, L2,	4	ROUTES ACROSS
	SERVICE PANEL	N), #6		BUILDING to AC
	THWN-2 (240 VAC)	(GEC)		EMT
	MAY DEDATING CLIDDENT (SEE CALCS	1 1		

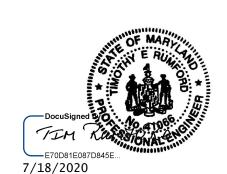
Landral . Kkiler

APPROVED

Montgomery County

Historic Preservation Commission

REVIEWED


7/18/2020

DO NOT TOUCH TERMINALS TERMINALS ON BOTH LINE AND LOAD

SIDES MAY BE ENERGIZED IN THE **OPEN POSITION**

By Dan.Bruechert at 2:24 pm, Sep 11, 2020

DocuSign Envelope ID: 648461D8-06F5-4A20-AA40-0E917022A572

1	Conductor Sizing per Art. 690.8(B)(1)			E	LECTRICAL CA	LCULA	ATION	IS	
		Hubert Chang - Montgomery County (Takoma Park Historic) 7135 Maple Ave. Takoma Park, MD 20912							
a	Conductor must have 30 deg. C ampacity >= 125% of continuous								
_	current per Art 215.2(A)(1).	Module		SunPower A-Series 415-wat	t Type-G AC panels	41		W STC	
_		Inverter	26	SUNPOWER FACTORY ul				W max	
b	Conductor must have (after corrections for conditions of use) >=						9074		
	continuous current per Table 310.16			C Electrical Specifications (RE	<u>:F):</u>		-		
C	Evaluate conductor temperature at termination per Art 110.14(C).	Pnim (DC)=	415	5 W			<u> </u>		
	Ampacity of wire derated for conditions of termination must be								
	>= continuous current * 1.25. All string terminations are rated at	AC Electrical							
	90 degrees C.	Output @ 24		i dia	211/240/264 V				
				min./nom./max.)	59.3/60.0/60.5 Hz	ļ			
2	OOP Sizing per Art. 690.8(B)(1)	Output Powe		· ·	1				
a	Round up to next size per Art 240.4(B)	AC Max. Cor	itinuous O	utput Current @ 240 V	1.49 A				
		Inverter Spec	cifications	:	SUNPOWER FACTORY ul				
3	Conductor Sizing per Art. 690.8(B)(1)					OUTPUT			
a	Conductor must have 30 deg. C ampacity >= 125% of continuous	Input Recom	. (W)	FACTORY	ОК	Rated outpu	t (W)		349
	current per Art 215.2(A)(1).	Max in DC V	oltage	FACTORY	ОК	Peak output	(W)		366
b	Conductor must have (after corrections for conditions of use) >=	Max In Curre	nt (A)	FACTORY	ОК	Nom. outpu	t Cur (A)		1.45
	continuous current per Table 310.16					max number	r in series:		11
C	Evaluate conductor temperature at termination per Art 110.14(C).							ok	
	Ampacity of wire derated for conditions of termination must be								
	>= continuous current * 1.25. All string terminations are rated at	Conductor S	zing, Inver	ter Input		1-way lengtl	n (ft)	na	
	75 degrees C min.	NA, inverter	input wirir	ng is factory cable, designed fo	or the purpose.				
		Verify Max numbers of inverters per strings is equal/less than 11							
4.	OOP Sizing	max string:	Α		9 ok <=11	and	B = 8, C=9		
a	Round up to next size per Art 240.4(B)	Conductor si	zing, Inver	ter Output (each circuitBOL	JNDING/WORST CASE)		1-way len		100
		Icont=	13.05		(1.45 A x number of inverters	s per ckt)			
		Icont*1.25+	16.31		ОСР		0 A	15A FOR CIRC B, 20A FOR CIRC C	
	***************************************	Wire	#10 AWG			Α	NEC TABL		
5	Conductor Sizing per Art. 690.8(B)(1)		Temp der	ate factor	0.58	unitless		C PER NEC TBL 310.15(B)(2)(.c)	
	Conductor must have 30 deg. C ampacity >= 125% of continuous		derated:		23.2		OK>		16.31
							1011		
		Conductor si	zing. Coml	bined Output from Load Cente	er via ac disco/cut off switch		 		25.00
		Icont=	37.70	1	(1.45A x number of inverters)			
		Icont*1.25+	47.13		(2) is the finance of interest	1			
_		Wire	#6 AWG 1	THWN-2	75	Δ	NEC TABL	F 310 16	
				ate factor		unitless	45		
			Conduit F			unitless		.15(B)(20(a)	
			Derated		65.25	_	OK>	115(5)(25(4)	47.13
			Delated		05.25		OK		47.13
_	current per Art 215.2(A)(1).			use	ОСР	5	0 A		
7	Conductor Sizing per Art. 690.8(B)(1)	Voltage Drov	n = (Δmn*?	use 2*ft*ohm/ft)/V	- CCF		-		
	Conductor must have 30 deg. C ampacity >= 125% of continuous	voitage DIO	2 - WILL 7	Amp	<u>ft</u>	ohm/ft	V	Note	
- 4	current per Art 215.2(A)(1).	Inverter out	out=	13.05	100	0.00126	240	#10	
	Conductor must have (after corrections for conditions of use) >=	Inverter out		13.03		<3%	ok	770	
D.	continuous current per Table 310.16	Load center		47.13	25.00	0.00050	240	#6	
_	Evaluate conductor temperature at termination per Art 110.14(C).	Load center			25.00 % ok	<3%	ok	mu	
	Ampacity of wire derated for conditions of termination must be	Load Center	σαιραι=	0.49	70 UK	\370	UK		
					-		+		
	>= continuous current * 1.25. All inverter output terminations are					1			

APPROVED

Montgomery County

Historic Preservation Commission

Sandral. Kkiler

REVIEWED

By Dan.Bruechert at 2:25 pm, Sep 11, 2020

HELIOS SOLAR SYSTEMS, LLC ASHBURN VA, USA WWW.HELIOSOLARSYS.COM 703 577 2178

RESIDENCE
PV SOLAR INSTALLATION
7135 MAPLE AVE.
TAKOMA PARK, MD 20912

TROSECTTIEE	
20912-01	
REVISION LEVEL	DATE
REV-1	DATE
DRAWN BY:	

GDC
CHECKED BY:
IR

DRAWING TITLE

ELECTRICAL CALCULATIONS

DRAWING NUMBER

E002

SunPower® Maxeon® Technology

Built specifically for use with the SunPower Equinox™ system, the only fully integrated solution designed, engineered and warranted by one manufacturer.

Highest Power Density Available.

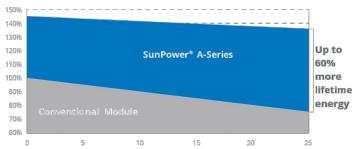
SunPower's new Maxeon® Gen 5 cell is 65% larger than prior generations, delivering the most powerful cell and highest-efficiency panel in residential solar. The result is more power per square meter than any commercially available solar.

Fundamentally Different. And Better.

SunPower® Maxeon® Technology

- Most powerful cell in home solar ²
- Delivers unmatched reliability³
- Patented solid metal foundation prevents breakage and corrosion

Factory-integrated Microinverte


- Highest-power integrated AC mod
- 60% lighter than prior SunPower
- Engineered and calibrated by SunPower for SunPower AC modu

OF MARY

Highest Lifetime Energy and Savings.

Designed to deliver 60% more energy over 25 years in real-world conditions like partial shade and high temperatures.1

Years of operation

Best Reliability. Best War

With more than 25 million mod the world, SunPower technolo why we stand behind our mod with the industry's best 25-year Product Warranty, including th

7/18/2020

APPROVED

Montgomery County Historic Preservation Commission

Sandrad Kkiler

A-Series: A425 | A415 | A400 SunPower® Residential AC Module

AC Electrical Data				
Inverter Model: SPWR-A4	@240 VAC			
Peak Output Power	366 VA			
Max. Continuous Output Power	349 VA			
Nom. (L–L) Voltage/Range ² (V)	240 / 211–264			
Max. Continuous Output Current (A)	1.45			
Max. Units per 20 A (L–L) Branch Circuit ³	11			
CEC Weighted Efficiency	97.0%			
Nom. Frequency	60 Hz			
Extended Frequency Range	47–68 Hz			
AC Short Circuit Fault Current Over 3 Cycles	5.8 A rms			
Overvoltage Class AC Port	III			
AC Port Backfeed Current	18 mA			
Power Factor Setting	1.0			
Power Factor (adjustable)	0.7 lead. / 0.7 lag.			

DC Power Data					
	SPR-A425-G-AC	SPR-A415-G-AC	SPR-A400-G-AC		
Nom. Power ⁵ (Pnom)	425 W	415 W	400 W		
Power Tol.	+5/-0%	+5/-0%	+5/-0%		
Module Efficiency	22.8	22.3	21.5		
Temp. Coef. (Power)	−0.29%/°C				
Shade Tol.	Integrated modu	ule-level max. pow	er point tracking		

Tested Operating Conditions						
Operating Temp.	-40°F to +140°F (-40°C to +60°C)					
Max. Ambient Temp.	122°F (50°C)					
Max. Load	Wind: 62 psf, 3000 Pa, 305 kg/m² front & back Snow: 125 psf, 6000 Pa, 611 kg/m² front					
Impact Resistance	1 inch (25 mm) diameter hail at 52 mph (23 m/s)					

	Mechanical Data
Solar Cells	66 Monocrystalline Maxeon Gen 5
Front Glass	High-transmission tempered glass with anti-reflective coating
Environmental Rating	Outdoor rated
Frame	Class 1 black anodized (highest AAMA rating)
Weight	46.5 lbs (21.1 kg)
Recommended Max. Module Spacing	1.3 in. (33 mm)

- 1 SunPower 415 W. 22.2% efficient, compared to a Conventional Panel on same-sized arrays (260 W, 16% efficient, approx. 1.6 m³), 7.9% more energy per watt (based on PVSyst pan files for avg. US climate), 0.5%/yr slower degradation rate (Jordan, et. al. "Robust PV Degradation Methodology and Application." PVSC 2018).

 2 Based on search of datasheet values from websites of top 10 manufacturers per IHS, as of
- 3#1rank in "Fraunhofer PV Durability Initiative for Solar Modules: Part 3." PVTech Power Magazine, 2015. Campeau, Z. et al. "Sun Power Module Degradation Rate," Sun Power White
- 4 Factory set to 1547a-2014 default settings. CA Rule 21 default settings profile set during
- commissioning. See the Equinox Installation Guide #518101 for more information.

 5 Standard Test Conditions (1000 W/m² Irradiance, AM 1.5, 25°C). NREL calibration standard: SOMS current, LACCS FF and voltage. All DC voltage is fully contained within the module. 6 This product is UL Listed as PVRSE and conforms with NEC 2014 and NEC 2017 690.12;
- and C22.1-2015 Rule 64-218 Rapid Shutdown of PV Systems, for AC and DC conductors when installed according to manufacturer's instruction

See www.sunpower.com/facts for more reference information.

For more details, see extended datasheet www.sunpower.com/datasheets Specifications included in this datasheet are subject to change without notice.

 $\hbox{@2019 SunPower Corporation. All Rights Reserved. SUNPOWER, the SUNPOWER logo and}$ MAXEON are registered trademarks of SunPower Corporation in the U.S. and other countries as well. 1-800-SUNPOWER.

- Warranties.	Certifications,	and	Compliance
	e er amedarana,		

· 25-year limited power warranty 25-year limited product warranty

· UL 1741 / IEEE-1547 Certifications · UL 1741 AC Module (Type 2 fire rated)

• UL 62109-1 / IEC 62109-2 • FCC Part 15 Class B

ICES-0003 Class B

· CAN/CSA-C22.2 NO. 107.1-01 CA Rule 21 (UL 1741 SAY

(includes Volt/Var and Reactive Power Priority)

UL Listed PV Rapid Shutdown Equipment⁶

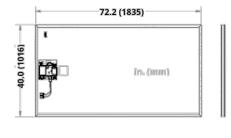
Enables installation in accordance with:

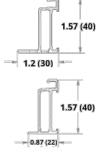
• NEC 690.6 (AC module)

NEC 690.12 Rapid Shutdown (inside and outside the array)

• NEC 690.15 AC Connectors, 690.33(A)–(E)(1)

When used with InvisiMount racking and InvisiMount accessories (UL 2703):


· Module grounding and bonding through InvisiMount


· Class A fire rated

When used with AC module Q Cables and accessories (UL 6703 and UL 2238)6;

· Rated for load break disconnect

Potential-induced degradation free

REVIEWED

By Dan.Bruechert at 2:25 pm, Sep 11, 2020

E003

ELECTRICAL MODULE

SPECS

RESIDENCE V SOLAR INSTALLATION 7135 MAPLE AVE. TAKOMA PARK, MD 20912

 \geq

PROJECT FILE

CHECKED BY

SCALE

HELIOS SOLAR SYSTEMS, LLC ASHBURN VA, USA WWW.HELIOSOLARSYS.COM 703 577 2178

SunPower® InvisiMount™ | Residential Mounting System

SunPower® InvisiMount™ | Residential Mounting System

Simple and Fast Installation

- Integrated module-to-rail grounding
- Pre-assembled mid and end clamps
- · Levitating mid clamp for easy placement
- Mid clamp width facilitates even module spacing
- Simple, pre-drilled rail splice
- UL 2703 Listed integrated grounding

Flexible Design

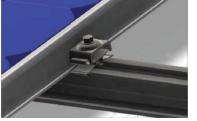
- Addresses nearly all sloped residential roofs
- Design in landscape and portrait
- · Rails enable easy obstacle management

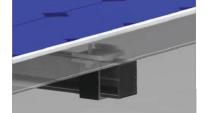
Customer-Preferred Aesthetics

- #1 module and #1 mounting aesthetics
- Best-in-class system aesthetics
- Premium, low-profile design
- Black anodized components
- Hidden mid clamps and end clamps hardware, and capped, flush rails

Part of Superior System

- Built for use with SunPower DC and AC modules
- Best-in-class system reliability and aesthetics
- Combine with SunPower modules and monitoring app


Elegant Simplicity


SunPower® InvisiMount™ is a SunPower-designed rail-based mounting system. The InvisiMount system addresses residential sloped roofs and combines faster installation time, design flexibility, and superior aesthetics. The InvisiMount product was specifically envisioned and engineered to pair with SunPower modules. The resulting system-level approach will amplify the aesthetic and installation benefits for both homeo

APPROVED Montgomery County

Historic Preservation Commission

Module* / End Clamp and Rail

Ground Lug Assembly

Component Weight Material Mid Clamp Black oxide stainless steel AISI 304 63 g (2.2 oz) End Clamp Black anodized aluminum alloy 6063-T6 110 g (3.88 oz) Black anodized aluminum alloy 6005-T6 | 830 g/m (9 oz/ft) Aluminum alloy 6005-T5 Rail Splice 830 g/m (9 oz/ft) Ground Lug 304 stainless 106.5 g/m (3.75 oz) Assembly (A2-70 bolt; tin-plated copper lug) End Cap Black acetal (POM) copolyme 10.4 g (0.37 oz)

- Composition Shingle Rafter Attachment Composition Shingle Roof Decking Attachment
- Curved and Flat Tile Roof Attachment
- Universal Interface for Other Roof Attachments

InvisiMount Operating Conditions					
Temperature	-40° C to 90° C (-40° F to 194° F)				
Max. Load	2400 Pa uplift 5400 Pa downforce				

InvisiMount Warranties And Certifications	
Warranties	25-year product warranty 5-year finish warranty
Certifications	UL 2703 Listed Class A fire rating when distance between roof surface and bottom of SunPower module frame is ≤ 3.5"

Refer to roof attachment hardware manufacturer's documentation

sunpower.c

7/18/2020

Sandral. Kkiler

SunPower Corporation. All Rights Reserved. SUNPOWER, the SUNPOWER logo, and INVISIMOUNT are trademarks or registered

sunpower.com Document #509506 Rev B

REVIEWED

SUNPOW By Dan.Bruechert at 2:25 pm, Sep 11, 2020

HELIOS SOLAR SYSTEMS, LLC ASHBURN VA, USA WWW.HELIOSOLARSYS.COM 703 577 2178

RESIDENCE V SOLAR INSTALLATION 7135 MAPLE AVE. TAKOMA PARK, MD 20912

PROJECT FILE

CHECKED B

HARDWARE MOUNTING DETAILS, SPEC

M001