

HISTORIC PRESERVATION COMMISSION

Marc Elrich

County Executive

Karen Burditt Chair

Date: 5/1/2025

MEMORANDUM

TO:	Rabbiah Sabbakhan
	Department of Permitting Services
FROM:	Dan Bruechert
	Historic Preservation Section
	Maryland-National Capital Park & Planning Commission
SUBJECT:	Historic Area Work Permit #1110102 & #1111619 - Grading and Fenestration Alterations

The Montgomery County Historic Preservation Commission (HPC) has reviewed the attached application for a Historic Area Work Permit (HAWP). This application was **approved** at the April 23, 2025 HPC meeting.

The HPC staff has reviewed and stamped the attached submission materials.

THE BUILDING PERMIT FOR THIS PROJECT SHALL BE ISSUED CONDITIONAL UPON ADHERENCE TO THE ABOVE APPROVED HAWP CONDITIONS AND MAY REQUIRE APPROVAL BY DPS OR ANOTHER LOCAL OFFICE BEFORE WORK CAN BEGIN.

Applicant:Mike ShermanAddress:5419 Mohican Rd., Bethesda

This HAWP approval is subject to the general condition that the applicant will obtain all other applicable Montgomery County or local government agency permits. After the issuance of these permits, the applicant must contact this Historic Preservation Office if any changes to the approved plan are made. Once work is complete, the applicant will contact Dan Bruechert at 301-563-3408 or <u>dan.bruechert@montgomeryplanning.org</u> to schedule a follow-up site visit.

Sherman Residence

5419 Mohican Road Bethesda, MD 20816

Owner

Michael and Carey Sherman 5419 Mohican Road Bethesda, MD 20816

APPROVED

Historic Preservation Commission

Montgomery County

Karn Bulit

REVIEWED By Dan Bruechert at 1:12 pm, May 01, 2025

April 2, 2025

North and West Elevation

A.100

Sherman Residence

5419 Mohican Road Bethesda, MD 20816

Owner

Michael and Carey Sherman 5419 Mohican Road Bethesda, MD 20816

April 2, 2025

South and East Elevation

A.101

Erosion and Sediment Control Notes

- 1. The permittee shall notify the Department of Permitting Services (DPS) forty eight (48) hours before commencing any land disturbing activity and, unless waived by the Department, shall be required to hold a pre construction meeting between them or their representative, their engineer and an authorized
- representative of the Department. The permittee must obtain inspection and approval by DPS at the following points: A. At the required pre construction meeting.
- B. Following installation of sediment control measures and prior to any other land disturbing activity. C. During the installation of a sediment basin or stormwater management structure at the required inspection points (see Inspection Checklist on plan). Notification prior to commencing construction is mandatory
- D. Prior to removal or modification of any sediment control structure(s). E. Prior to final acceptance.
- The permittee shall construct all erosion and sediment control measures per the approved plan and construction sequence, shall have them inspected and approved by the Department prior to beginning any other land disturbances, shall ensure that all runoff from disturbed areas is directed to the sediment control devices, and shall not remove any erosion or sediment control measure without prior permission from the Department.
- The permittee shall protect all points of construction ingress and egress to prevent the deposition of materials onto traversed public thoroughfare(s). All materials deposited onto public thoroughfare(s) shall be removed immediately.
- The permittee shall inspect periodically and maintain continuously in effective operating condition, all erosion and sediment control measures until such time as they are removed with prior permission from the Department. The permittee is responsible for immediately repairing or replacing any sediment control measures which have been damaged or removed by the permittee or any other person. *Following initial soil disturbance or re disturbance, permanent or temporary stabilization must be
- completed within: a. Three (3) calendar days as to the surface of all perimeter dikes, swales, ditches, perimeter slopes and all slopes steeper than 3 horizontal to 1 vertical (3:1); and b. Seven (7) calendar days as to all other disturbed or graded areas on the project site not under active
- All areas disturbed outside of the perimeter sediment control system must be minimized and stabilized immediately. Maintenance must be performed as necessary to ensure continued stabilization. The permittee shall apply *sod, seed, and anchored straw mulch, or other approved stabilization measures to all disturbed areas within seven (7) calendar days after stripping and grading activities have ceased on that area. Maintenance shall be performed as necessary to ensure continued stabilization. Active construction areas such as borrow or stockpile areas, roadway improvements, and areas within fifty (50) feet of a building under construction may be exempt from this requirement, provided that erosion and
- sediment control measures are installed and maintained to protect those areas. Prior to removal of sediment control measures, the permittee shall stabilize all contributory disturbed areas with required soil amendments and topsoil, using sod or an approved permanent seed mixture and an approved anchored mulch. Wood fiber mulch may only be used in seeding season when the slope does not exceed 10% and grading has been done to promote sheet flow drainage. Areas brought to finished grade during the seeding season shall be permanently stabilized within seven (7) calendar days of establishment. When property is brought to finished grade during the months of November through February, and permanent stabilization is found to be impractical, an approved temporary seed and straw anchored mulch shall be applied to disturbed areas. The final permanent stabilization of such property
- shall be completed prior to the following April 15. The site permit, work, materials, approved SC/SM plans, and test reports shall be available at the site for inspection by duly authorized officials of Montgomery County. 10. Surface drainage flows over unstabilized cut and fill slopes shall be controlled by either preventing drainage flows from traversing the slopes or by installing mechanical devices to lower the water down slope without causing erosion. Dikes shall be installed and maintained at the top of cut or fill slopes until the slope and drainage area to it carefully stabilized, at which time they must be removed and final grading done to promote sheet flow drainage. Mechanical devices must be provided at points of concentrated flow
- where erosion is likely to occur. 1. Permanent swales or other points of concentrated water flow shall be stabilized within 3 calendar days of establishment with sod or seed with approved erosion control matting or by other approved stabilization measures.
- 12. Sediment control devices shall be removed, with permission of the Department, within thirty (30) calendar days following establishment of permanent stabilization in all contributory drainage areas. Stormwater management structures used temporarily for sediment control shall be converted to the permanent configuration within this time period as well. 13. *No permanent cut or fill slope with a gradient steeper than 3:1 will be permitted in lawn maintenance
- areas or on residential lots. A slope gradient of up to 2:1 will be permitted in non maintenance areas provided that those areas are indicated on the erosion and sediment control plan with a low maintenance ground cover specified for permanent stabilization. Slope gradient steeper than 2:1 will not be permitted with vegetative stabilization. 14. The permittee shall install a splashblock at the bottom of each downspout unless the downspout is
- connected by a drain line to an acceptable outlet. 15. For finished grading, the permittee shall provide adequate gradients so as to prevent water from standing on the surface of lawns more than twenty four (24) hours after the end of a rainfall, except in designated drainage courses and swale flow areas, which may drain as long as forty eight (48) hours after the end of a rainfall.
- 16. Sediment traps or basins are not permitted within 20 feet of a building which is existing or under construction. No building may be constructed within 20 feet of a sediment trap or basin.
- . All inlets in non sump areas shall have asphalt berms installed at the time of base paving establishmer 18. The sediment control inspector has the option of requiring additional sediment control measures, as
- deemed necessary. 19. All trap elevations are relative to the outlet elevation, which must be on existing undisturbed ground. 20. *Vegetative stabilization shall be performed in accordance with the Standards and Specifications for Soil
- Erosion and Sediment Control. 21. Sediment trap(s)/basin(s) shall be cleaned out and restored to the original dimensions when sediment has accumulated to the point of one half ($\frac{1}{2}$) the wet storage depth of the trap/basin ($\frac{1}{4}$) the wet storage
- depth for ST III) or when required by the sediment control inspector. 22. Sediment removed from traps/basins shall be placed and stabilized in approved areas, but not within a floodplain. 23. All sediment basins and traps must be surrounded with a welded wire safety fence. The fence must be at least 42 inches high, have posts spaced no farther apart than 8 feet, have mesh openings no greater the two inches in width and four inches in height, with a minimum of 14 gauge wire. Safety fence must be
- maintained in good condition at all times. 24. No excavation in the areas of existing utilities is permitted unless their location has been deter mined. Call "Miss Utility" at 1 800 257 7777, 48 hours prior to the start of work. 25. Off site spoil or borrow areas must have prior approval by DPS.
- 26. Sediment trap/basin dewatering for cleanout or repair may only be done with the DPS inspector's permission. The inspector must approve the dewatering method for each application. The following methods may be considered:
- A. Pump discharge may be directed to another on site sediment trap or basin, provided it is of sufficient volume and the pump intake is floated to prevent agitation or suction of deposited sediments; or B. the pump intake may utilize a Removable Pumping Station and must discharge into an undisturbed
- area through a non erosive outlet; or C. the pump intake may be floated and discharge into a Dirt Bag (12 oz. non woven fabric), or approved equivalent, located in an undisturbed buffer area. Remember: Dewatering operation and method must have prior approval by the DPS inspector. Remember: Dewatering operation and method must have prior approval by the DPS inspector.
- 27. The permittee must notify the Department of all utility construction activities within the permitted limits of disturbance prior to the commencement of those activities. 28. *Topsoil must be applied to all pervious areas within the limits of disturbance prior to permanent stabilization in accordance with MDE "Standards and Specifications for Soil Preparation, Topsoiling, and Soil Amendments".
- * Class of turfgrass sod must be Maryland State Certified. Sod labels must be made available to the job foreman and the Sediment Control Inspector.

SEQUENCE OF CONSTRUCTION

- Prior to clearing trees, installing sediment control measures, or grading, a preconstruction meeting must be conducted on site with the Montgomery County Department of Permitting Services (MCDPS) Sediment Control inspector (240) 777 0311 (48 hours notice) and the MNCPPC, Planning Department, Plans Enforcement inspector (301)495 4550 (48 hours notice), the Owners representative, and the site Engineer. In order for the meeting to occur, the applicant must provide one paper set of approved sediment control plans to the MCDPS sediment control inspector at the preconstruction meeting. If no plans are provided, the meeting shall not occur and will need to be rescheduled prior to commencing any work. (1 Day)
- The limits of disturbance must be field marked prior to clearing of trees, installation of sediment control measures, construction, or other land disturbing activities. (1 Day) The permittee must obtain written approval form the MNCPPC inspector, certifying that the limits of disturbance and tree protection measures are correctly marked and installed prior to commencing any
- clearing. (1 Day) Clear and grade for installation of sediment control devices. (2 Days) Install Stabilized Construction Entrance (SCE), Diversion Fences and Super Silt Fences, as shown on the plan. (3 Days)
- Once the sediment control devices are installed, the permittee must obtain written approval from the
- MCDPS inspector before proceeding with any additional clearing, grubbing or grading. (1 Day) Begin installation of water & sewer utilities. (1 Week)
- Begin installation of roof leaders. Roof leaders, as shown on the plan are to be blocked until Drywells and Rain Barrels are installed. (1 Week)
- Begin grading and construction of permeable driveway. (2 Weeks) 10. Once completion grading, stabilized all disturbed areas. (1 Day)
- 11. Stabilize all disturbed areas within the allowed time frame, per the specifications specified on the approved Sediment Control Plans. (1 Day)
- 12. Once all construction activities related to driveway and utilities completed, install Drywells and
- Concrete Permeable Pavement. (2 Weeks) 13. Adjustments are allowed in the field to complete this installation, and as allowed by Montgomery
- County DPS Site inspector. (1 Day) 14. Stabilize all disturbed areas. (1 Day)
- 15. Once construction completed, with the permission of sediment control inspector, remove all sediment control devices. (1 Day)
- 16. Submit executed record drawing certification to the sediment control inspector. (1 Day) 17. Submit SWM as built to MCDPS for review and approval as final step. (1 Day)

RECORD DRAWING CERTIFICATION

A record set of approved Sediment Control/Stormwater Management plans must be maintained on-site at all times. In addition to stormwater management items, these plans must include the number and location of all trees proposed to be planted to comply with the Tree Canopy Law. Any approved modifications or deletions of stormwater practices or tree canopy plantings or information must be shown on this record set of plans and on the Tree Canopy Requirements table. Upon completion of the project, this record set of plans, including hereon this signed Record Drawing Certification, must be

submitted to the MCDPS inspector. In addition to this Record Drawing Certification, a formal Stormwater Management As-Built submission [] is required [x] is not required for this project. If this project is subject to a Stormwater Management Right of Entry and Maintenance Agreement, that document is recorded

in Montgomery County Land Records at: Liber **66586** Folio **441** . This Record Drawing will serve as referenced in the recorded document.

This record drawing accurately and completely represents the stormwater management practices and tree canopy plantings as they were constructed or planted. All stormwater management practices were constructed per the approved Sediment Control / Stormwater Management plans or subsequent approved revisions."

DATE:

Owner/ Developer Signature

FIELD CHECK OF RECORD DRAWING BY MCDPS INSPECTOR: INITIALS: Effective for sediment control permit applications made on or after January 1, 2016.

REV# DATE

CONSTRUCTION INSPECTION CHECK-OFF LIST FOR DRY WELL/RECHARGE CHAMBER

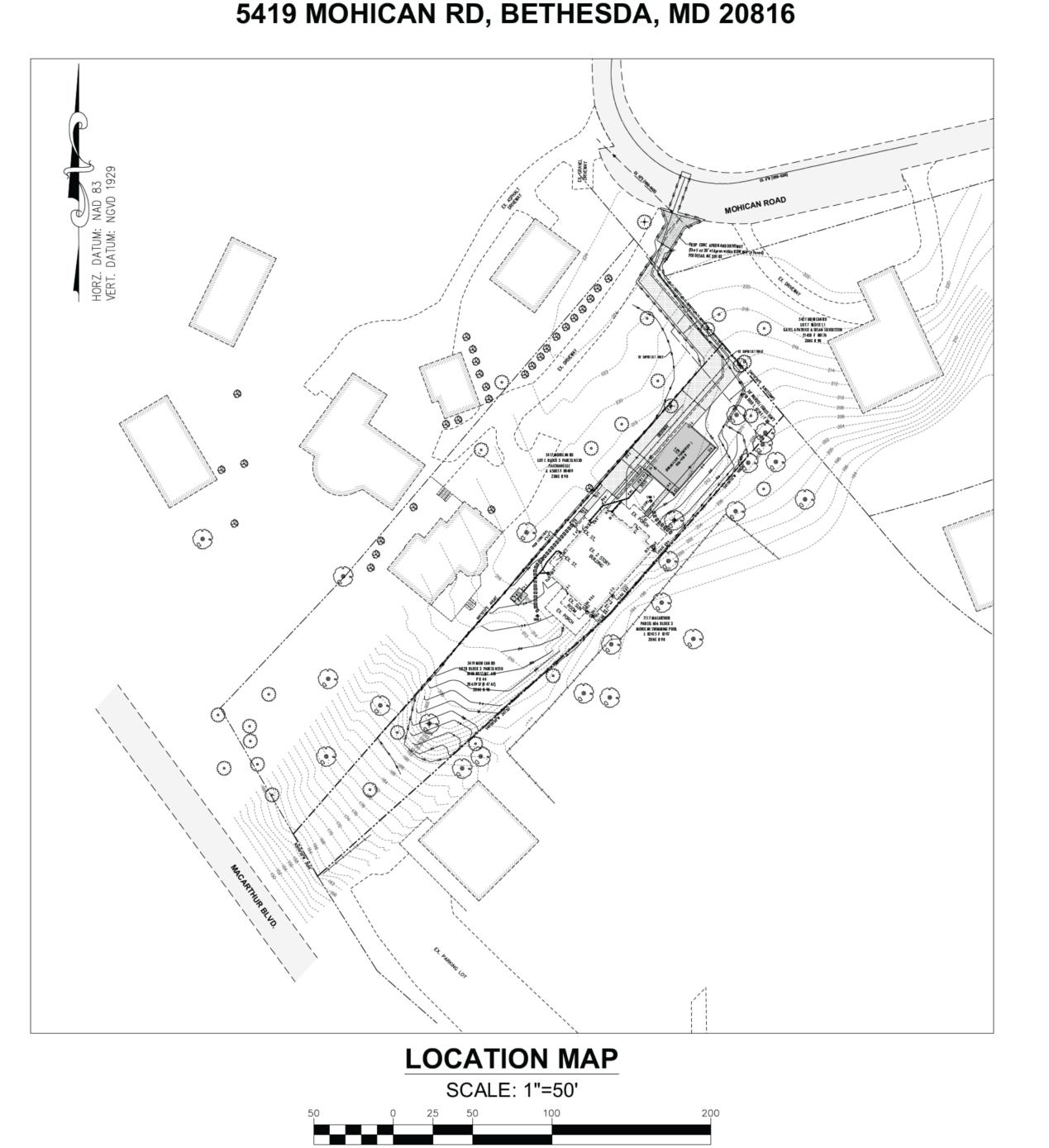
CHECK-OFF LIST FOR DRY WELL/RECHARGE CHAMBEI	ر
STAGE	MCDPS INSPECTOR
MANDATORY NOTIFICATION: Inspection and approval of each practice is required at these points prior to proceeding with construction. The permittee is required to give the MCDPS Inspector twenty-four (24) hours notice (DPS telephone 240-777-0311). The DPS inspector may waive an inspection, and allow the owner/developer to make the required inspection per a prior scheduled arrangement which has been confirmed with the DPS inspector in writing. Work completed without MCDPS approval may result in the permittee having to remove and reconstruct the unapproved work. Upon completion of the project, a formal Stormwater Management As-Built must be submitted to MCDPS unless a Record Drawing Certification has been allowed instead. Each of the steps listed below must be verified by either the MCDPS Inspector OR the Owner/Developer.	INITIALS/DATE
1. Excavation for Dry Well conforms to approved plans	
Placement of backfill, perforated inlet pipe and observation well conforms to approved plans	
3. Placement of geotextiles and filter media conforms to approved plans	
 Connecting pipes, including connection to downspout, constructedper the approved plans 	
5. Final grading and permanent stabilization conforms to approved plans	
TOTAL NUMBER OF DRY WELLS INSTALLED PER THIS PERMIT: APPR	OVED 2
CONSTRU	JCTED

CONSTRUCTION INSPECTION

RAINWATER HARVESTING (CISTERNS AND RAIN BARRELS) Upon completion of the project, a formal Stormwater Management As Built must be submitted to MCDPS unless a Record Drawing Certification has been allowed instead. "The constructed Rainwater Harvesting System meets the conditions specified on the approved plans. Structures required to be water tight were tested after installation and were demonstrated to be water tight."

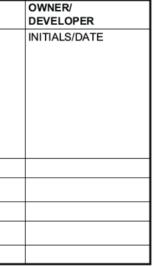
Owner/Developer Signature Date

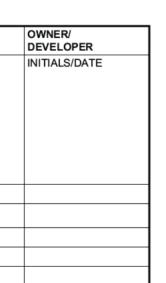
CONSTRUCTION INSPECTION CHECK-OFF LIST FOR PERMEABLE PAVEMENTS


STAGE	MCDPS INSPECTOR
MANDATORY NOTIFICATION: Inspection and approval of each practice is required at these points prior to proceeding with construction. The permittee is required to give the MCDPS Inspector twenty-four (24) hours notice (DPS telephone 240-777-0311). The DPS inspector may waive an inspection, and allow the owner/developer to make the required inspection per a prior scheduled arrangement which has been confirmed with the DPS inspector in writing. Work completed without MCDPS approval may result in the permittee having to remove and reconstruct the unapproved work. Upon completion of the project, a formal Stormwater Management As-Built must be submitted to MCDPS unless a Record Drawing Certification has been allowed instead. Each of the steps listed below must be verified by either the MCDPS Inspector OR the Owner/Developer.	INITIALS/DATE
1. Excavation to subgrade conforms to approved plans	
Placement of backfill, perforated inlet pipe and observation well conforms to approved plans	
3. Placement of crushed stone subbase conforms to approved plans	
4. Placement of surface material conforms to approved plans	
5. Final grading and permanent stabilization conforms to approved plans	

	LEG	GEND
FEATURE	SYMBOL	FEATURE
EXISTING STRUCTURES	EX.	EXISTING WATER LINE
PROPOSED STRUCTURES		EXISTING SEWER LINE
PROPERTY BOUNDARY LINE		EXISTING SANITARY SEWER MANHOLE
EXISTING TOPOGRAPHY	-200	PROPOSED WATER HOUSE CONNECTIO
PROPOSED GRADING		PROPOSED SEWER HOUSE CONNECTIO
PROPOSED SPOT ELEVATION	+200.2	PROPOSED GRAVEL DRYWELL
PROPOSED STORM DRAIN PIPE	4" PVC	PROP. CONCRETE PERMEABLE PAVEME
EXISTING FENCE	xx	PROPOSED DOWNSPOUT
LIMIT OF DISTURBANCE	LOD LOD	SUPER SILT FENCE
POWER POLE		PROPOSED RETAINING WALL
PROP. STABILIZED CONSTRUCTION ENTRANCE	SCE	BUILDING RESTRICTION LINE
GAS LINE	GAS GAS	OBSERVATION WELL
ROAD CENTERLINE	–CL –	PROPOSED RAIN BARREL
DRAINAGE AREA LINE	$- \leftarrow - \leftarrow \leftarrow \leftarrow$	SOIL BORING- INFILTRATION TEST HOLE
TREE PROTECTION FENCE/ ROOT PRUNING		SOIL BORING- HAND AUGER
EXISTING SHRUB	E.	PROPOSED UNDERGROUND ELECTRIC
PROPOSED PERMEABLE DRIVEWAY		EXISTING TREE (TO BE SAVED)
PROPOSED CONCRETE PAVEMENT		CRITICAL ROOT ZONE (C.R.Z.)
PROPOSED TREE (PLANTING) 400 SF GROWING ZONE		EXISTING TREE (TO BE REMOVED) CRITICAL ROOT ZONE (C.R.Z.)

STORMWATER MANAGEMENT PLAN & EROSION AND SEDIMENT CONTROL PLAN


APPROVED


Department of Permitting Services

(IN FEET)

1 inch = 50 ft

	SYMBOL	
	— → — —	
	(Ŝ)	
N	WHC	
N	SHC	
	D.W.1	
INT	PP-1	
	0	
	SSF	
	25' BRLN	
	00.W	
	R.B1	
	🔶 swм-1	
	🕀 НА-1	
line	E E	
	()()	

SI	TE DATA
1	Address ·

- Address 2. Owner Name:
- Legal Description: Lot:
- Block: LIBER / FOLIO:
- Existing Use: Proposed Use:
- Tax Man[.]
- 10. Tax ID No.: 11. Election District Number:
- 12. Gross Lot Area: 13. Dedication ROW Area: 14. Net Lot Area:
- 15. Zoning: 16. WSSC Grid:
- 17. Water Category: 18. Sewer Category:
- 19. Historic Site: 20. Special Protection Area:
- 21. Watershed: 22. Zoning Regulations: Minimum Lot Area
- Maximum Lot Coverage
- *=(Building Footprint) / Lot Area = (2,003 SF / 20,659 SF) x 100 = 9.70% Minimum Front Setback Minimum Side Setback Minimum Rear Setback Minimum Lot Frontage (Building Line) 75' Minimum Lot Frontage (Street Line) 25' Parking Space for Single Family Unit 2.00

Maximum Building Height

5419 Mohican Road, Bethesda, MD 20816 John Ross Mcnair Glen Echo Heights 40953 / 265 Vacant Residential (Single Family) 03682311 20,659 SF (0.47 Ac.) 0 SF (0 Ac.) 20,659 SF (0.47 Ac.) R 90 207NE06 W 1 S 1 No Lower Rock Creek Required/Allowed 20,659 SF (0.47 Ac) 9,000 SF 20% 9.70%* 118.1' 108.8' 12.0' ,8.4' 223.3' 59.39'

60.07'

33.48'

I/We hereby certify that all clearing, grading, plan and that any responsible personnel in Attendance at a Department of Natural Reso erosion before beginning the project. Signature	nvolved in the cons urces approved train
DESI	GN CERTIFICATIO
hereby certify that this plan has been prepare	
pecification for Soil Erosion and Sediment C	

rieleby certify that this plan has been prepared in	accordance wit
Specification for Soil Erosion and Sediment Contro	ol," Montgomery
Services Executive Regulations 5 90, 7 02AM and	36 90, and Mo
Works and Transportation "Storm Drain Design Cr	iteria" dated Au
m Razavi	2/
Design Engineer Signature	Dat

Design Engladeer Signature	
Mike Razavi Printed Name	2 F

CERTIFICATION OF THE QUANTITIES

OWNER'S/DEVELOPER'S CERTIFICATION

I hereby certify that the estimated total amount of excavation and fill as shown on these plans has been computed to 395 cubic yards of excavation, 10 cubic yards of fill and the total area to be disturbed as shown on these plans has been determined to be 12,276 square feet.

•		
m Razavi		2/1
esign Engineer Signature		Dat
ke Razavi		227
inted Name	-	Reg

and hereby certify that, based that the proposed improvemen acknowledge that I have analy standpoint of my responsibilitie permission is required from ad those permissions available to	the proposed design upon my backgroun its shown on this pl zed the post develops under current Ma jacent property own	an meet relevant laws and ro opment runoff patterns for th aryland Law and have deterr	it no. <u>288215</u> I have determined egulations. I further is project from the nined that if
m Razavi	10/	/30/2024	
Engineer's Signature	– Da		
MOHAMMAD RAZAVI			
Printed Name			
To be completed by the consultant plan set for all projects. A fee in lie	and placed on the first u of planting will be ch		Stormwater Management ees that are not planted.
applicable exemption cate	•		, prodoc oncon the
Total Property A	rea	Total Distur	bed Area
20,659squa	ire feet	17,856	square feet
Shade Trees Requ	lired	Shade Trees Propos	ed to be Planted
15		15	
Numbe	r of Trees Requiri	ng Payment of Fee in Lieu	
		- Trees Planted) Trees	
	(Trees Required	- Trees Planted)	
Area (sq. ft.) of	(Trees Required 0 Required Number the Limits	- Trees Planted) 	
Area (sq. ft.) of of Disturbance	(Trees Required 0 Required Number the Limits	Trees Planted) Trees Trees of Shade Trees	
Area (sq. ft.) of	(Trees Required 0 Required Number the Limits	- Trees Planted) 	
Area (sq. ft.) of of Disturbance <u>FROM</u>	(Trees Required 0 Required Number the Limits <u>TO</u>	I - Trees Planted) Trees er of Shade Trees Number o Trees Req 3 6	
Area (sq. ft.) of of Disturbance <u>FROM</u> 1 6,001 8,001	(Trees Required 0 Required Number the Limits TO 6,000 8,000 12,000	I - Trees Planted) 	
Area (sq. ft.) of of Disturbance <u>FROM</u> 1 6,001 8,001 12,001	(Trees Required 0 Required Number the Limits TO 6,000 8,000 12,000 14,000	I - Trees Planted) Trees Pr of Shade Trees Number o Trees Req 3 6 9 12	
Area (sq. ft.) of of Disturbance <u>FROM</u> 1 6,001 8,001	(Trees Required 0 Required Number the Limits TO 6,000 8,000 12,000	I - Trees Planted) 	
Area (sq. ft.) of of Disturbance <u>FROM</u> 1 6,001 8,001 12,001 14,001 If the square footage of the	(Trees Required 0 Required Number the Limits TO 6,000 8,000 12,000 14,000 40,000 e limits of disturba	- Trees Planted) 	then the number of
Area (sq. ft.) of of Disturbance <u>FROM</u> 1 6,001 8,001 12,001 14,001 If the square footage of the shade trees rec	(Trees Required 0 Required Number the Limits TO 6,000 8,000 12,000 14,000 40,000 e limits of disturbat quired must be calc	- Trees Planted) 	then the number of ormula
Area (sq. ft.) of of Disturbance <u>FROM</u> 1 6,001 8,001 12,001 14,001 If the square footage of the shade trees rec	(Trees Required 0 Required Number the Limits TO 6,000 8,000 12,000 14,000 40,000 e limits of disturba quare Feet in Limit EXEMPTION	- Trees Planted)	then the number of ormula

55-5(i) cutting or clearing any tree to comply with

REVIEWED

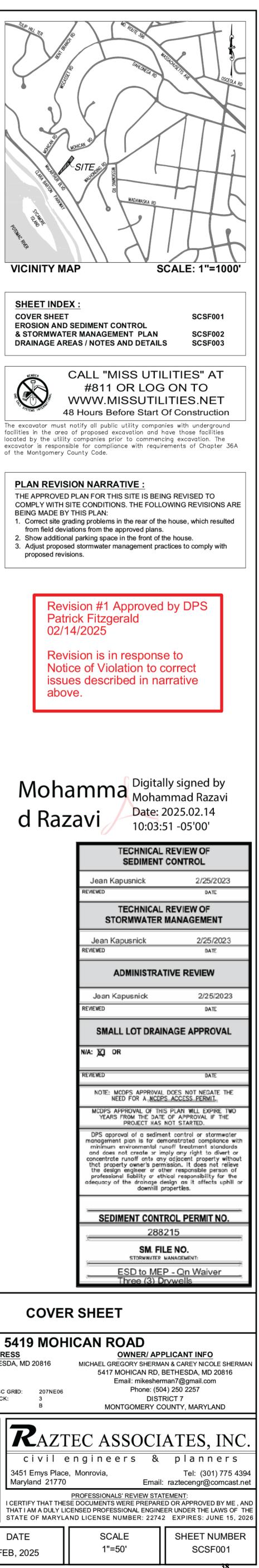
APPROVED

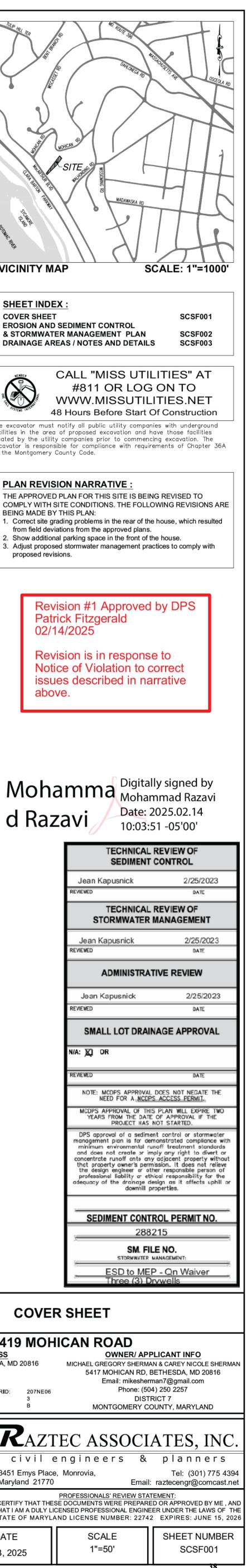
Montgomery County

Historic Preservation Commission

Karen Dulit

By Dan Bruechert at 1:12 pm, May 01, 2025

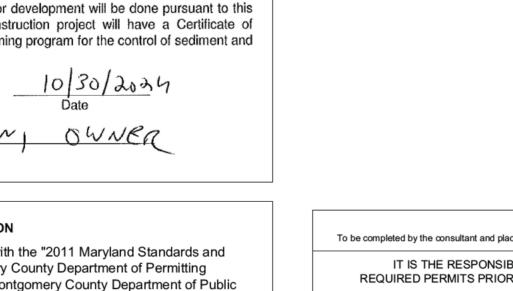

applicable provisions of any federal, state, or


OTHER: Specify per Section 55 5 of the Code.

local law governing safety of dams;


RUNOFF STATEMENT

I understand that DPS approval of this sediment control/stormwater management plan is for



Article II of Chapter 22A;

Department:

55 5(f) any activity conducted by the County Parks

55 5(g) routine or emergency maintenance of an

existing stormwater management facility, including an

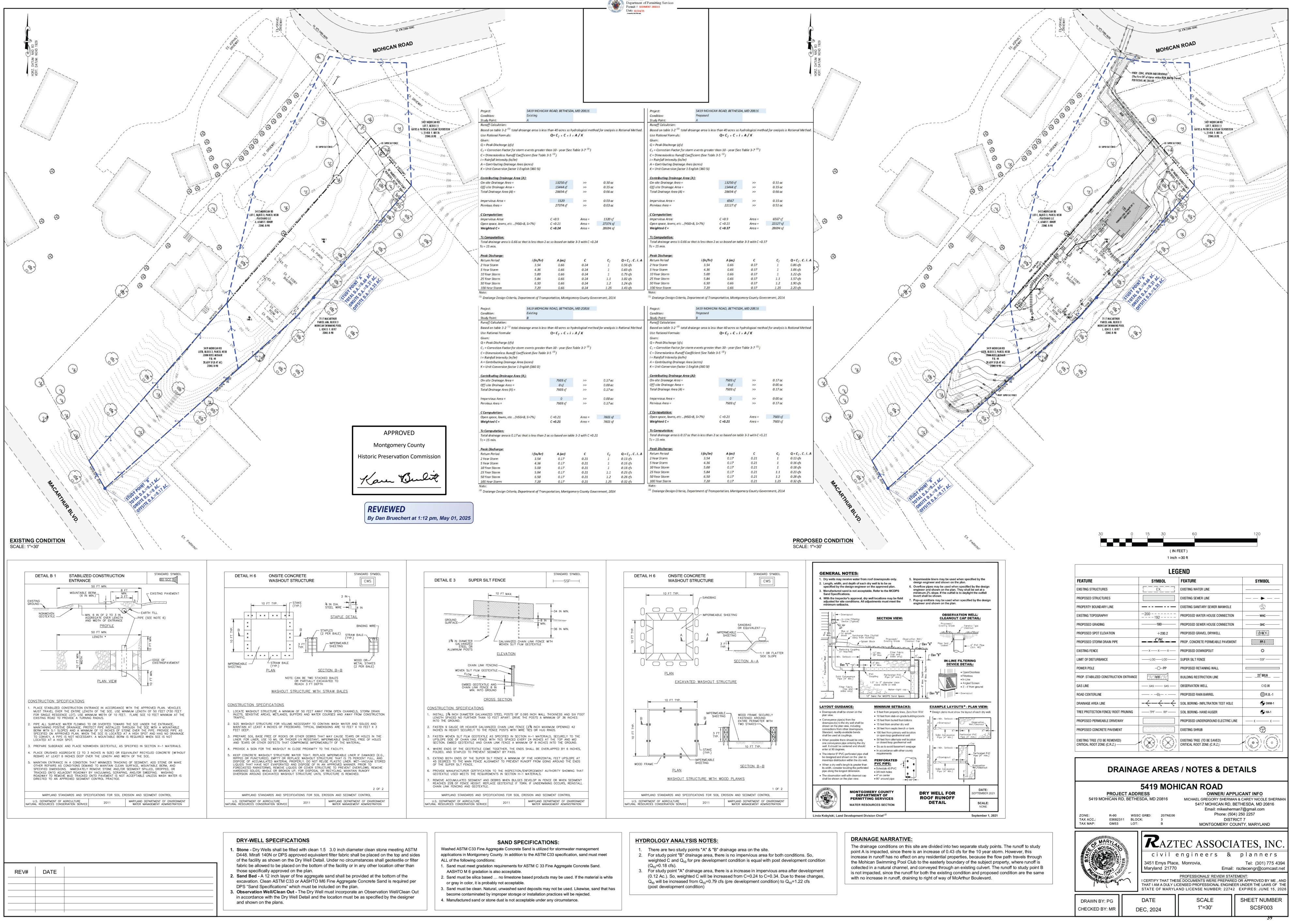
existing access road, if the person performing the

maintenance has obtained all required permits;

MDE's 20-CP permit has been submitted to DPS.

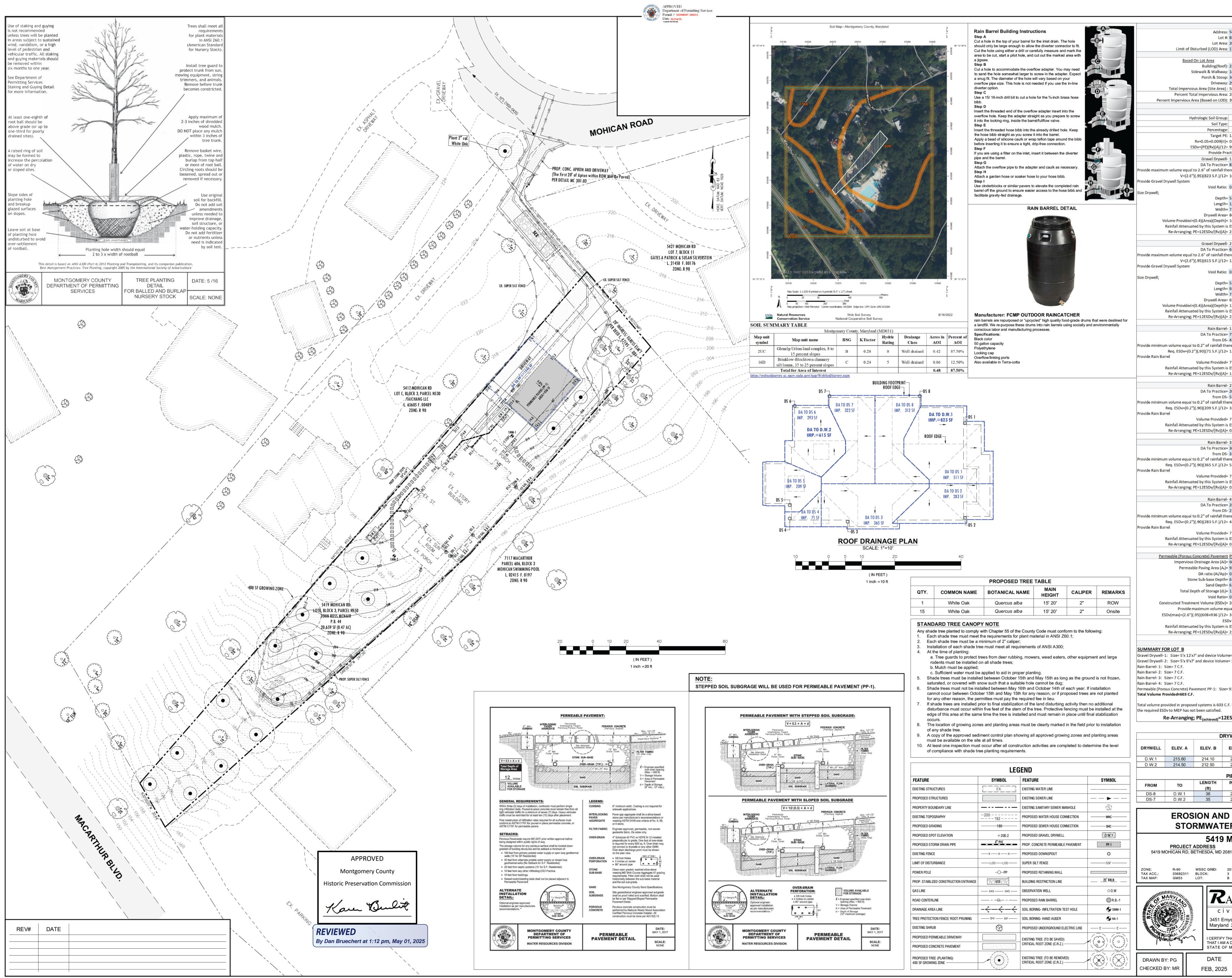
County Department of Permitting ontgomery County Department of Public ugust 1988. 2/14/2025 ate

22742 Registration Number


14/2025

742

egistration Number


IT IS THE RESF REQUIRED PERMITS				R OF THIS SITE TO C ROVED SEDIMENT C	
TYPE OF PERMIT	REQD	NOT REQ	PERMIT #	EXPIRATION DATE	WORK RESTRICTION DATE
MCDPS Floodplain District		Х			
WATERWAYS/WETLAND(S):					
a. Corps of Engineers		Х			
b. MDE		X			
c. MDE Water Quality Certification		Х			
MDE Dam Safety		X			
* DPS Roadside Trees			007400	Approval Date	
Protection Plan	X		387168	2/10/2023	1
** N.P.D.E.S. NOTICE OF INTENT		Х			
FEMA LOMR (Required Post Construction)		х			
OTHERS (Please List):					

	CO
	5419 M CT ADDRESS D, BETHESDA, MD 2081
ZONE: R-90 TAX ACC.: 036823 ⁷ TAX MAP: GM53	WSSC GRID: 207 11 BLOCK: 3 LOT: B
HILL BOUSAL	CiVi 3451 Emys Maryland 2
DRAWN BY: PG CHECKED BY: MR	DATE FEB, 2025

					and the second se	APPROVED Department o Permit # SEDI	f Permitting Services				
					·	Date 02/14/25 Samely Mat Davide					
EX 6°W (1956-10206)	K										
_	'										
OHICAN ROAD											
	i										
	1										
	-77										
R. 188	17/1//////////////////////////////////										
991/EWAx											
	Project:		N ROAD, BETHESDA	, MD 20816			Project:		N ROAD, BETHESDA,	MD 20816	
	Condition: Study Point:	Existing A					Condition: Study Point:	Proposed A			
GATES & PATRICK & SUSAN SILVERSTEIN	Runoff Calculation: Based on table 3-2 ⁽¹⁾ total dri	nianae area is les	s than 40 acres so hu	drological metho	d for analysis is	Pational Method	Runoff Calculation: Based on table 3-2 ⁽¹⁾ total d	raianae area is less	than 10 acres so hu	drological metho	od for
L 21458 F. 00176 ZONE:R-90	Use Rational Formula:	and type area is less	$Q = C_f \times C \times i \times$		a jor analysis is	Rottonui Method.	Use Rational Formula:	rulunge area is less	$Q = C_f \times C \times i \times$		a jor c
-EX SUPER SILT FENCE	Given: Q = Peak Discharge (cfs)						Given: Q = Peak Discharge (cfs)				
214	$C_f = Correction Factor for stor$			Table 3-7 ⁽¹⁾)			$C_f = Correction Factor for sto$			able 3-7 ⁽¹⁾)	
214	C = Dimensionless Runoff Coej i = Rainfall Intensity (in/hr)		3-5)				C = Dimensionless Runoff Coefficient (See Table 3-5 ⁽¹⁾) i = Rainfall Intensity (in/hr)				
212	A = Contributing Drainage Area K = Unit Conversion factor 1 Er						A = Contributing Drainage Are K = Unit Conversion factor 1 E				
-210	Contributing Drainage Area	(A):					Contributing Drainage Area	(A):			
208	On-site Drainage Area = Off-site Drainage Area =		13250 sf 15444 sf	>>	0.30 ac 0.35 ac		On-site Drainage Area = Off-site Drainage Area =		13250 sf 15444 sf	>>	0
8 - 204	Total Drainage Area (A) =		28694 sf	>>	0.66 ac		Total Drainage Area (A) =		28694 sf	>>	0
	Impervious Area =		1320	>>	0.03 ac		Impervious Area =		6567	>>	C
	Pervious Area =		27374 sf	>>	0.63 ac		Pervious Area =		22127 sf	>>	0
	<u>C Computation:</u> Impervious Area:		C =0.9	Area =	1320 sf		<u>C Computation:</u> Impervious Area:		C =0.9	Area =	é
Contraction of the second seco	Open space, lawns, etc(HSG Weighted C=	=B, S>7%)	C =0.21 C =0.24	Area = Area =	27374 sf 28694 sf		Open space, lawns, etc (HSC Weighted C=	G=B, S>7%)	C =0.21 C =0.37	Area = Area =	2
A N			C-0.24	Areu -	20054 5j				C-0.37	Areu -	20
	<u>Tc Computation:</u> Total drainage area is 0.66 ac	that is less than 2	ac so based on table	e 3-3 with C =0.2	4		<u>Tc Computation:</u> Total drainage area is 0.66 ad	c that is less than 2	ac so based on table	- 3-3 with C =0.3	7
	<i>Tc</i> = 15 <i>min</i> .						Tc = 15 min.				
	Peak Discharge: Return Period	i (in/hr)	A (ac)	с	C _f	$Q = C_f \cdot C \cdot i \cdot A$	<u>Peak Discharge:</u> Return Period	i (in/hr)	A (ac)	с	
the second se	2 Year Storm	3.54	0.66	0.24 0.24	1	0.56 cfs	2 Year Storm 5 Year Storm	3.54	0.66 0.66	0.37 0.37	
	5 Year Storm 10 Year Storm	4.36 5.00	0.66 0.66	0.24	1 1	0.69 cfs 0.79 cfs	10 Year Storm	4.36 5.00	0.66	0.37	
Contraction and the second sec	25 Year Storm 50 Year Storm	5.84 6.50	0.66 0.66	0.24 0.24	1.1 1.2	1.02 cfs 1.24 cfs	25 Year Storm 50 Year Storm	5.84 6.50	0.66 0.66	0.37 0.37	
	100 Year Storm Note:	7.20	0.66	0.24	1.25	1.43 cfs	100 Year Storm Note:	7.20	0.66	0.37	
	⁽¹⁾ Draiange Design Criteria, De	partment of Trans	sportation, Montgon	nery County Gove	ernment, 2014		⁽¹⁾ Draiange Design Criteria, De	epartment of Trans	portation, Montgom	nery County Gove	ernme
	Project:	5419 MOHICA	N ROAD, BETHESDA	, MD 20816			Project:	5419 MOHICA	N ROAD, BETHESDA,	, MD 20816	
	Condition: Study Point:	Condition: Existing					Condition: Proposed Study Point: B				
	Runoff Calculation: Based on table 3-2 ⁽¹⁾ total dru	nianna araa is las	than 40 acros so hu	drological mothe	d for analysis is	Pational Mathed	Runoff Calculation: Based on table 3-2 ⁽¹⁾ total d	raianaa araa is lass	than 40 acros so hu	drological mother	ad for
	Use Rational Formula:	alange area is less	$Q = C_f \times C \times i \times$		a jor analysis is	kational Methoa.	Use Rational Formula:	raiange area is less	$Q = C_f \times C \times i \times$		a for a
	Given: Q = Peak Discharge (cfs)						Given: Q = Peak Discharge (cfs)				
	C _f = Correction Factor for stor			Table 3-7 ⁽¹⁾)			C_f = Correction Factor for sto C = Dimensionless Runoff Coe			able 3-7 ⁽¹⁾)	
	C = Dimensionless Runoff Coej i = Rainfall Intensity (in/hr)		3-5)				i = Rainfall Intensity (in/hr)		3-5 **)		
	A = Contributing Drainage Area K = Unit Conversion factor 1 Er						A = Contributing Drainage Are K = Unit Conversion factor 1 E				
	Contributing Drainage Area	(A):					Contributing Drainage Area	(A):			
	On-site Drainage Area = Off-site Drainage Area =		7603 sf	>>	0.17 ac		On-site Drainage Area = Off-site Drainage Area =		7603 sf 0 sf	>>	0
	Total Drainage Area (A) =		0 sf 7603 sf	>>	0.17 ac		Total Drainage Area (A) =		7603 sf	>>	0
	Impervious Area =		0	>>	0.00 ac		Impervious Area =		0	>>	0
	Pervious Area =		7603 sf	>>	0.17 ac		Pervious Area =		7603 sf	>>	0
	<u>C Computation:</u> Open space, lawns, etc(HSG	=B, S>7%)	C =0.21	Area =	7603 sf		<u>C Computation:</u> Open space, lawns, etc(HSC	G=B, S>7%)	C =0.21	Area =	7
	Weighted C =		C =0.21	Area =	7603 sf	_	Weighted C =		C =0.21	Area =	7
APPROVED	Tc Computation:						Tc Computation:	that is loss the	no so have describe	2 2	
	Total drainage area is 0.17 ac Tc = 15 min.	that is less than 2	ac so based on table	e 3-3 with C =0.2	1		Total drainage area is 0.17 ad Tc = 15 min.	that is less than 2	ac so based on table	: 3-3 with C =0.2	1
ontgomery County	Peak Discharge:						Peak Discharge:				
Preservation Commission	Return Period 2 Year Storm	i (in/hr) 3.54	A (ac)	С 0.21	<i>c</i> , 1	Q =C _j .C.I.A 0.13 cfs	Return Period 2 Year Storm	i (in/hr) 3.54	A (ac)	C 0.21	
	5 Year Storm	4.36	0.17	0.21	1	0.16 cfs	5 Year Storm	4.36	0.17	0.21	
	10 Year Storm 25 Year Storm	5.00 5.84	0.17 0.17	0.21 0.21	1 1.1	0.18 cfs 0.23 cfs	10 Year Storm 25 Year Storm	5.00 5.84	0.17 0.17	0.21 0.21	
un Bulit	50 Year Storm 100 Year Storm	6.50 7.20	0.17 0.17	0.21 0.21	1.2 1.25	0.28 cfs 0.32 cfs	50 Year Storm 100 Year Storm	6.50 7.20	0.17 0.17	0.21	
	Note:						Note: ⁽¹⁾ Draiange Design Criteria, De				ernma
	⁽¹⁾ Draiange Design Criteria, De	our enent of Trans	sponation, Montgon	ery county Gove	innent, 2014		oralange besign criteria, Di	spontinent of mans	portation, wontgon	county Gove	anne

30	60	120
(IN F 1 inch:		
T IIICH -	-30 11	
LEG	END	
BOL	FEATURE	SYMBOL
	EXISTING WATER LINE	
	EXISTING SEWER LINE	<u> </u>
	EXISTING SANITARY SEWER MANHOLE	(Ŝ)
	PROPOSED WATER HOUSE CONNECTION	
0	PROPOSED SEWER HOUSE CONNECTION	SHC
200.2	PROPOSED GRAVEL DRYWELL	
x	PROP. CONCRETE PERMEABLE PAVEMENT	PP-1
-LOD	SUPER SILT FENCE	
	PROPOSED RETAINING WALL	
939 939		
— gas ——	OBSERVATION WELL	00.W
	PROPOSED RAIN BARREL	R.B1
$\leftarrow \leftarrow$	SOIL BORING- INFILTRATION TEST HOLE	SWM-1
– RP ——	SOIL BORING- HAND AUGER	● HA-1
	PROPOSED UNDERGROUND ELECTRIC LINE	—— Е —— Е ——
	EXISTING SHRUB	درمی درمی
$(\overline{\mathbb{S}})$	Existing tree (to be saved) Critical root zone (c.r.z.)	
REAS	/ NOTES & DET	AILS
мон	ICAN ROAD	
	OWNER/ APPLIC	
0816	MICHAEL GREGORY SHERMAN 8 5417 MOHICAN RD, BET	HESDA, MD 20816
207NE06	Email: mikesherman Phone: (504) 2	00
3 B	DISTRIC MONTGOMERY COUN	
AZT	EC ASSOCIA	TES, INC.
vil e	ngineers &	planners
	, Monrovia,	Tel: (301) 775 4394
d 21770	Email: ra	ztecengr@comcast.net
A DULY LIC	E DOCUMENTS WERE PREPARED C ENSED PROFESSIONAL ENGINEER ND LICENSE NUMBER: 22742	OR APPROVED BY ME , AND UNDER THE LAWS OF THE
	SCALE 1"=30'	SHEET NUMBER SCSF003
4		39
		37

5419 M	ohican Ro	ad, Bethesda,	MD 20816		
B 20659 S	.F.				
17856 S Imperv	.F. /ious Area	(A)	Base	d On LOD	
2366 S.F 187 S.F.			Build	ding(Roof): 236 Walkway: 187	
343 S.F. 2930 S.F	:.	Tetelle		h & Stoop: 343 Driveway: 410	04 S.F.
5826 S.F 28.20% 39.20%		(I) (I)	Based	rea (LOD) : 700 on entire lot on LOD	00 S.F.
	ulation	(11)	baseu		
	A	B 2UC	_	C	D
0.0 1.60 inc	00% h	87.50%		2.50% on entire lot	0.00%
0.403 959 C.F.				on LOD ed ESDv	
1		e Roof Runoff			
823 S.F. erefore v 169 C.F.	olume allo	owed is:			
0.40					
5.00 Fee	et				
12.00 Fee 7.00 Fee 84 S.F.					
168 C.F.	E)(Rv)(A)/	/12			
2.58 in		<2.6 inch-OK			
2 615 S.F.					
erefore vo 127 C.F.	olume allo	wed is:			
0.40					
5.00 Fee 9.00 Fee	et				
7.00 Fee					
126 C.F. ESDv=(P 2.59 in	E)(Rv)(A)/	/12 <2.6 inch-OK			
1					
71 S.F. 4					
erefore vo 1.07 C.F	olume allo	wed is: 8 Gal			
	E)(Rv)(A)/				
1.31 in		<2.6 inch-OK			
2 209 S.F. 5					
-	olume allo	wed is: 23 Gal			
7 C.F.		55 Gal			
ESDv=(P 0.45 in	E)(Rv)(A)/	/12 <2.6 inch-OK			
3 365 S.F.					
3 erefore vo	olume allo				
5.48 C.F		41 Gal			
7 C.F. ESDv=(P 0.26 in	E)(Rv)(A)/	55 Gal /12 <2.6 inch-OK			
4		<2.6 Inch-OK			
283 S.F. 2					
erefore vo 4.25 C.F	olume allo	wed is: 32 Gal			
7 C.F. FSDv=(P	E)(Rv)(A)/	55 Gal			
0.33 in		<2.6 inch-OK			
<u>PP-1</u> 608 S.F.					
936 S.F. 0.65		DA<=1 OK			
6 " 6 " 12 "		d.=Stone Sub	-hase Denth	n + Sand Depth	
0.30 281 C.F.		$ESDv=(A_f)(d_f)$		r + Sand Depth	
ual to 2.6 318 C.F.		all therefore v ESDv(max.)=(olume allow		
	E)(Rv)(A)/				
2.30 inc	n	<2.6 inch-OK			
e= 168 C	.F.				
= 126 C.F					
936 SF' a	and device	e Volume= 281	L C.F.		
F. which i	is less tha	n the required	target volu	me of 959 C.F	Therefore,
ESDv/(I	Rv)(A)=	1.01 inch	<2.6	inch-OK	
	SCHEI				
ELEV. D	DI	DULE MENSIONS (DxLxW)		IBUTING DUS AREA	STORAGE CAPACITY
209.10	5	(ft) 5' x 12' x 7'	() 8	sf) 23	(cf) 168
207.50		5' x 9' x7'	6	15	126
INVERT		LE NVERT IN ELEV. C		SLOPE (%)	
215.57 214.17		213.27 211.67		(%) 6.39% 7.14%	
		ENT CA AGEMI			
		N ROA		•	
816		OW HAEL GREGOR	NER/ APP	PLICANT INF	COLE SHERMA
		5417 MOH Email	ICAN RD, E : mikesherr	BETHESDA, M man7@gmail.c	ID 20816
207NE06 3 3			DIST	4) 250 2257 RICT 7 DUNTY, MARY	YLAND
				ATES	, INC
/il (e n g	ineer		plan	ners
ys Place 21770				raztecengr	301) 775 439 @comcast.ne
DULY L	SE DOCL	PROFESSION	E PREPARE NAL ENGINE	D OR APPROV	E LAWS OF T
WARYL		ENSE NUME	эек: 22742	2 EXPIRES:	JUNE 15, 20
		SCALE		SHEET	NUMBED
		SCALE 1"=20'			NUMBER SF002